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1. EQUATION OF MOTION AND RESPONSE

The governing equation for a balanced rigid rotor supported at ends in bearings with
non-linear sti!nesses is written as [1]

xK#2mu
n
xR #G(x)"f(t), (1)

where G(x) is an unknown function. The random excitation to the system is represented by
f(t). The approach to the solution of equation (1) is greatly simpli"ed if the overall random
excitation to the system, from the variety of sources, is treated as ideal white noise. The
steady state solution of equation (1), in terms of joint probability density function, can be
obtained as
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where S
0

is the uniform spectral density of excitation, c is a normalization constant and

g (x)"P
s

0

G(g) dg.

The probability density functions p(x) and p (xR ) are obtained from equation (2) and the
variance of the velocity response is obtained from p (xR ). Using the velocity variance the
probability density function for the displacement response can be written as [1]
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with
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xR
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2. IDENTIFICATION AND ESTIMATION

The objective of the identi"cation procedure is to detect the form of the non-linear
function G(x). On taking logarithm on both sides and di!erentiating with respect to x,
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equation (3) gives

(1/p(x))Mdp(x)/dxN"(!1/p2
xR
)G (x). (4)

Equation (4) can be rewritten in more convenient form as

G (x)"(!p2
xR
)M1/p(x)NMdp(x)/dxN. (5)

The above equation is a representation of the restoring force function G (x) in terms of the
displacement and velocity response of the rotor-bearing system. Variance, p2

xR
, probability

function, p (x), and its derivative, dp(x)/dx, can be computed from the experimentally
measured displacement and velocity data (x and xR ), which enables the reconstruction of
function G(x).

3. ILLUSTRATION

The procedure is illustrated on a laboratory rig consisting of a disc centrally mounted on
a shaft supported in two identical ball bearings. The shaft is driven through a #exible
coupling by a motor and the vibration signals are picked up (after balancing the rotor) in
both, the vertical and horizontal directions, by accelerometers mounted on one of the
bearing housings. The signals from the accelerometers are digitized on a PC/AT after
magni"cation.

Typical displacement and velocity signals in the vertical direction are picked up by the
accelerometer the non-linear restoring force, G (x) of the bearing estimated from equation (5)
is shown in Figure 1. The trend indicates the presence of a softening type of non-linearity.
The form can be approximated to the desired degree of accuracy through a polynomial in x.
Employing the simplest representation, G (x) can be expressed as

G(x)"u2
n
(x!jx3). (6)

The bearing parameters, u2
n

and j can now be readily obtained through equation (6) and
Figure 1. Bearing parameters thus obtained for the displacement and velocity signals and
two other such sets are given in Table 1.
Figure 1. The variation of the non-linear restoring force.



TABLE 1

Estimated parameters (vertical direction)

Signal set u2
n

(rad/s)2 j (mm~2) G (x) (N/kg)

1 5)42E7 !1)27E6 5)42E4x!6)88E10x3
2 5)37E7 !1)24E6 5)37E4x!6)66E10x3
3 5)32E7 !1)23E6 5)32E4x!6)54E10x3

TABLE 2

Estimated parameters (horizontal direction)

Signal set u2
n

(rad/s)2 j (mm~2) G (x) (N/kg)

1 3)21E7 !1)29E6 3)21E4x!4)14E10x3
2 3)14E7 !1)24E6 3)14E4x!3)89E10x3
3 3)11E7 !1)25E6 3)11E4x!3)89E10x3
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A similar exercise with displacement and velocity signals in the horizontal direction yields
the parameter values listed in Table 2.

4. VALIDATION

The values of the bearing sti!ness parameters u2
n

and j, obtained by the procedure
outlined, are validated by comparison with those obtained from the analytical formulations
of Harris [2] and Ragulskis et al. [3], which are based on Hertzian contact theory.

It can be seen that the bearing sti!ness is critically dependent on the preloading, g, of the
balls. While the manufacturer may, at times, provide the preload range, the exact value of
the preloading of the bearing balls in the shaft-casing assembly, especially during operations
which have involved wear and tear, would be di$cult to determine. It is also to be noted
that the theoretical sti!ness calculations are based on formulations which analyze the
bearing in isolation of the shaft. The theoretically possible sti!nesses are listed in Table 3.
The expressions for the theoretical sti!nesses in Table 3 have been obtained by curve "tting
the sti!ness values obtained from the analytical formulations of Harris [2] and Ragulskis et
al. [3], through a quadratic in x.

The sti!ness parameter estimates of Tables 1 and 2, from the procedure developed, show
good agreement with the results of Table 3, obtained through available analytical
formulations for isolated ball bearings. The advantage of the proposed methods over other
available techniques is distinct from the fact that it does not involve measurement of the
excitation forces and works directly on the random response signals, which can be
conveniently picked up at the bearing caps and also that the procedure does not require the
damping in the system to be known.

5. SIMULATION CHECK FOR MEASUREMENT ERRORS

A computer simulation is carried out to obtain an estimate for the robustness of the
procedure, in the presence of measurement noise. The actual noise-to-signal ratio in the



TABLE 3

¹heoretical bearing sti+ness parameters [2, 3]

Preload (mm) G(x) (N/mm)

0)0002 1)20]104!4)01]1010x2
0)0003 1)47]104!2)18]1010x2
0)0004 1)69]104!1)42]1010x2
0)0005 1)89]104!1)02]1010x2
0)0006 2)08]104!6)09]109x2

Figure 2. The variation of the non-linear restoring force, without measurement noise.

Figure 3. The variation of the non-linear restoring force, with 1% measurement noise.
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instruments used for measurement of displacement and velocity signals was found to be less
than 1%.

For the purpose of computer simulation two cases are considered*(i) without noise and
(ii) 1% random noise in the measurement of both*displacement and velocity. The
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displacement and velocity signals are simulated, through Monte}Carlo simulation of
a non-linear system with restoring force being given by a simplest type of restoring force,
G(x), G(x)"u2

n
x!ju2

n
x3 (u2

n
"5)42]107 (rad/s)2 and j"!1)27]106 (mm~2)). The

restoring force, G(x), is estimated from equation (5) and is shown in Figure 2. For the second
case, 1% random noise is added to the measured signals. Figure 3 is the estimated restoring
force G(x) for the noisy displacement signal.

The values for G (x), obtained for the two cases are

Without noise (5)42]104x!6)60]1010x3),

With 1% noise (5)23]104x!6)81]1010x3).

The closeness of the above values suggests that the e!ect of measurement noise on the
estimates is minimal. A more rigorous error analysis can be carried out with non-
dimensional parameters and for both hardening and softening restoring force to "rmly
establish the robustness of the algorithm.

CONCLUSION

The procedure has a distinct advantage over existing ones in that it does not require
a known input force for excitation of the system. It works directly on the naturally available
response signals of the machine. The procedure carries out identi"cation of the form of the
non-linearity and also provides estimates of the parameters. The results show good
agreement with the theoretical possible values for isolated bearings. The computer
simulation exhibits a check for the degree of error due to possible measurement noise.

REFERENCES

1. R. TIWARI and N. S. VYAS 1995 Journal of Sound and <ibration 187, 229}239. Estimation of
nonlinear sti!ness parameters of rolling element bearings from random response of rotor bearing
systems.

2. T. A. HARRIS 1984 Rolling Bearing Analysis. New York: Wiley.
3. K. M. RAGULSKIS, A. YU. JAUKAUSKAS, V. V. ATSTUPENAS, A. YU VITKUTE and A. P. KULVEC 1974
<ibration of Bearings. Vilnyis: Mintis Publishers.

4. R. TIWARI and N. S. VYAS 1997 Journal of Sound and <ibration 203, 389}408. Nonlinear bearing
sti!ness parameter extraction from random response in #exible rotor-bearing systems.


	1. EQUATION OF MOTION AND RESPONSE
	2. IDENTIFICATION AND ESTIMATION
	3. ILLUSTRATION
	Figure 1
	TABLE 1
	TABLE 2

	4. VALIDATION
	5. SIMULATION CHECK FOR MEASUREMENT ERRORS
	TABLE 3
	Figure 2
	Figure 3

	CONCLUSION
	REFERENCES

